

USN

18MAT11

First Semester B.E. Degree Examination, Jan./Feb. 2021 **Calculus and Linear Algebra**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

1 a. With usual notation, prove that
$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$$
 (06 Marks)

b. Find the radius of curvature for the parabola
$$\frac{2a}{r} = 1 + \cos \theta$$
 (06 Marks)

c. Show that the evolute of the parabola
$$y^2 = 4ax$$
 is $27ay^2 = 4(x-2a)^3$ (08 Marks)

2 a. Find the angle of intersection of the curves
$$r = 2\sin\theta$$
 and $r = 2\cos\theta$ (06 Marks)

b. Find the pedal equation of the curve
$$r^m = a^m [cosm\theta + sinm\theta]$$
 (06 Marks)

c. For the curve
$$y = \frac{ax}{a+x}$$
, show that $\left(\frac{2\rho}{a}\right)^{\frac{2}{3}} = \left(\frac{x}{y}\right)^{2} + \left(\frac{y}{x}\right)^{2}$ (08 Marks)

3 Using Maclaurin's series, prove that

$$\sqrt{1+\cos 2x} = \sqrt{2} \left[1 - \frac{x^2}{2} + \frac{x^4}{24} - \dots \right]$$
 (06 Marks)

b. Evaluate i)
$$\underset{x \to 0}{\text{Lt}} \left(\frac{1}{x}\right)^{2\sin x}$$
 ii) $\underset{x \to 0}{\text{Lt}} \left[\frac{a^x + b^x + c^x}{3}\right]^{\frac{1}{x}}$ (07 Marks)

c. Examine the function
$$f(x, y) = 2 + 2x + 2y - x^2 - y^2$$
 for its extreme values. (07 Marks)

4 a. If
$$u = f(y-z, z-x, x-y)$$
 then prove that $u_x + u_y + u_z = 0$. (06 Marks)

a. If
$$u = f(y-z, z-x, x-y)$$
 then prove that $u_x + u_y + u_z = 0$.
b. If $u = 3x + 2y - z$; $v = x - 2y + z$; $w = x^2 + 2xy - xz$ then show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = 0$

c. The pressure P at any point (x, y, z) in space $P = 400xyz^2$. Find the highest pressure at the surface of a unit sphere $x^2 + y^2 + z^2 = 1$. (07 Marks)

5 a. Evaluate:
$$\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$$
 (06 Marks)

b. Obtain the relation between Beta and Gama functions in the form
$$\beta(m, n) = \frac{\left| m \right| n}{\left| m + n \right|}$$

(07 Marks)

c. Find the centre of Gravity of the curve
$$r = a(1 + \cos\theta)$$
. (07 Marks)
1 of 2

18MAT11

6 a. Change the order of integration and evaluate $\int_{0}^{1} \int_{\sqrt{y}}^{1} dx dy$

(06 Marks)

- b. A Pyramid is bounded by three coordinate planes and the plane x + 2y + 3z = 6. Compute the volume by double integration. (07 Marks)
- c. Prove that $\int_{0}^{\pi/2} \sqrt{\sin \theta} \, d\theta \times \int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} = \pi$

(07 Marks)

Module-4

- 7 a. Solve $\left[y\left(x+\frac{1}{x}\right)+\cos y\right]dx + \left[x+\log x x\sin y\right]dy$ (06 Marks)
 - b. A body in air at 25°C cools from 100°C to 75°C in 1 minute, find the temperature of the body at the end of 3 minutes. (07 Marks)
 - c. Prove that the system of confocal and coaxial parabolas $y^2 = 4a(x + a)$ is self orthogonal. (07 Marks)

OR

- 8 a. Solve: $xyp^2 (x^2 + y^2)p + xy = 0$ (06 Marks)
 - b. Solve: $\frac{dy}{dx} + y \tan x = y^3 \sec x$ (07 Marks)
 - c. Solve the equation $L\frac{di}{dt} + Ri = E_o \sin wt$ where L, R and E_o are constants and discuss the case when t increases indefinitely. (07 Marks)

Module-5

- 9 a. Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$ using elementary row operation. (06 Marks)
 - b. Find largest eigen value and eigen vector of the matrix $\begin{pmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{pmatrix}$ by taking $(1, 0, 0)^T$ as

initial eigen vector by Rayleigh's power method (perform 6 iteration). (07 Marks)

c. Solve the system of equations x + y + z = 9; x - 2y + 3z = 8; 2x + y - z = 3, by Gauss Jordan method. (07 Marks)

OR

- 10 a. For what value of λ and μ the system of equations x+y+z=6; x+2y+3z=10; $x+2y+\lambda z=\mu$ has i) No solution ii) Unique solution iii) Infinite number of solution. (06 Marks)
 - b. Reduce the matrix $A = \begin{bmatrix} 4 & 3 \\ 2 & 9 \end{bmatrix}$ into the diagonal form. (07 Marks)
 - c. Solve the system of equations 83x + 11y 4z = 95, 7x + 52y + 13z = 104, 3x + 8y + 29z = 71 by Gauss Seidal method (carry out 4 iteration). (07 Marks)